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Abstract
We propose an automated method for disproving fair termination
of higher-order functional programs, which is complementary to
Murase et al.’s recent method for proving fair termination. A pro-
gram is said to be fair terminating if it has no infinite execution
trace that satisfies a given fairness constraint. Fair termination is an
important property because program verification problems for arbi-
trary ω-regular temporal properties can be transformed to those of
fair termination. Our method reduces the problem of disproving fair
termination to higher-order model checking by using predicate ab-
straction and CEGAR. Given a program, we convert it to an abstract
program that generates an approximation of the (possibly infinite)
execution traces of the original program, so that the original pro-
gram has a fair infinite execution trace if the tree generated by the
abstract program satisfies a certain property. The method is a non-
trivial extension of Kuwahara et al.’s method for disproving plain
termination. We implemented a prototype verification tool based on
our method and confirmed its effectiveness.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods, Model
checking; F.3.1 [Logics and Meaning of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical verifi-
cation

General Terms Languages, Verification

Keywords Automatic Verification, Fair Termination, Higher-
Order Programs, Predicate Abstraction, Higher-Order Model Check-
ing, CEGAR

1. Introduction
There has recently been rapid progress in automated (or semi-
automated) techniques for verification of higher-order functional
programs [11, 15–17, 19, 21, 22, 26, 27, 29, 30, 33, 35, 36].
Verification methods have been proposed for various properties,
including safety properties [19, 33], termination [11, 21], non-
termination [22], and fair termination [24].

In the present paper, we propose a method for disproving fair
termination, which plays a role complementary to Murase et al.’s
method [24] for proving fair termination. Fair termination is a
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key to proving temporal properties of programs: Vardi [34] has
shown that the verification of any ω-regular temporal property
can be reduced to that of fair termination. Cook et al. [4] applied
the reduction to verification of liveness properties of imperative
programs. Murase et al. [24] has recently proposed a method for
proving fair termination of higher-order programs, but their method
cannot be used for disproving it.

Let us briefly explain the notion of fair termination. A (pos-
sibly infinite) execution trace σ of a program is fair with respect
to a (Streett) fairness constraint {(A1, B1), . . . , (An, Bn)} (where
Ai, Bi are called events) when, for every i, if the event Ai occurs
infinitely often in σ, so does the event Bi. For example, an infinite
trace (AB)ω = ABABAB · · · is fair with respect to the constraint
{(A,B)}, but Aω = AAA · · · is not. A program P is fair termi-
nating when P has no fair infinite execution traces. Many temporal
properties can be naturally reduced to fair termination. For exam-
ple, let Never be an event that never happens. Then, the fair ter-
mination of a program with respect to the constraint {(A, Never)}
means that A occurs infinitely often in any infinite run of the pro-
gram; notice that an infinite run that contains only finitely many
A’s is fair, violating the fair termination condition. For another ex-
ample, to check that a function f is eventually called in any infinite
run of the program, it suffices to replace the function f with a func-
tion to raise event A infinitely often, and check that the resulting
program is fair terminating with respect to {(A, Never)}. See [34]
for a general reduction from ω-regular property verification to fair
termination verification.

As a concrete example for illustrating why fair termination is
of interest, let us consider the following program P0, consisting of
mutually recursive function definitions:

rand () = ∗int

randnneg () = let x = rand () in

if 0 ≤ x then x else randnneg ()

main = randnneg ().

Here, ∗int is a special expression that generates a random integer;
thus the function rand returns a random integer. The function
randnneg returns a non-negative random integer, by repeatedly
calling rand and then returning the result only if it is non-negative.

Suppose that we wish to prove that the program above is ter-
minating; note that the program is terminating indeed, since rand
must eventually return a non-negative integer by the assumption
on randomness. Ordinary termination verification methods [11, 21]
would, however, fail to prove so, since they would treat ∗int as a
non-deterministic function to return an integer. Using fair termina-
tion, we can incorporate the assumption that rand eventually re-
turns a non-negative integer. Let us instrument the program above,



as the following program P1:

rand () = let r = ∗int in

if 0 ≤ r then (event B; r) else (event A; r)

randnneg () = let x = rand () in

if 0 ≤ x then x else randnneg ()

main = randnneg ().

Here, we have inserted event expressions (event B and event A),
to signal whether the value returned by rand is non-negative or
not. Then, the fairness assumption about rand can be expressed
by {(A,B)},1 and fair termination of the program under {(A,B)}
means that the program terminates if rand is fair. The program P1

above is indeed fair terminating under {(A,B)}, and can be proved
so by the method of Murase et al. [24].

Now we consider the following programP2, which is a variation
of P1:

rand () = let r = ∗int in

if 0 ≤ r then (event B; r) else (event A; r)

randpos () = let x = rand () in

if 0 < x then x else randpos ()

main = randpos ().

Notice that the branching condition in the second function has been
changed to 0 < x. The program is not fair terminating under
{(A,B)}. If rand returns 0 and a negative integer alternately, the
event sequence is BABABA · · ·, which is fair, but the program is
not terminating.

As already mentioned, the goal of the present paper is to auto-
matically disprove fair termination (i.e., to prove that a given pro-
gram has a fair infinite execution trace). For the examples above,
we wish to show that P2 is not fair terminating under {(A,B)}.
In general, disproving a liveness property is much harder than dis-
proving a safety property. In the case of safety, one just needs to
find a finite execution trace that violates the safety property. In con-
trast, in the case of liveness, we need to find an infinite execution
trace that violates the property. Even for plain termination, it is only
recent that automated methods for disproving termination [11, 22]
have been obtained for higher-order functional programs.

Following Kuwahara et al.’s method for disproving plain ter-
mination [22], we combine higher-order model checking [28]
with predicate abstraction and counterexample-guided abstraction
refinement (CEGAR) to disprove fair termination. Higher-order
model checking decides whether the (possibly infinite) tree gener-
ated by a given higher-order tree grammar (called a higher-order
recursion scheme; HORS for short) satisfies a given regular prop-
erty. For finite data higher-order programs where only finite base
types (such as Booleans, not infinite data domains like integers and
lists) are allowed, arbitrary regular properties can be decided by
first transforming a program to a HORS, and then applying higher-
order model checking [17, 23]. For infinite data programs (that
may use data from infinite data domains, like integers, lists, and
trees), however, we need to combine higher-order model checking
with predicate abstraction.

An overall flow of our method is shown in Figure 1. In Step 1,
given a higher-order functional program P (that may use infinite
data domains) and a fairness constraint C as input, we apply predi-
cate abstraction to generate a pair consisting of (i) an abstract pro-
gram, which is a Boolean, higher-order, tree-generating functional
program QP , and (ii) a tree automaton AC , which describes the

1 This actually defines a stronger assumption than needed here, that if rand
returns negative integers infinitely often, then it also returns non-negative
integers infinitely often, not just once.
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Figure 2: An example of the tree generated by an abstract program.

property that should be satisfied by the tree generated by QP . The
tree generated by QP describes an abstraction of possible execu-
tion traces of the original program P . Figure 2 shows an example
of the tree generated by an abstract program. The tree consists of
event nodesA andB, and special nodes ∃,∀, and End. In the figure,
Aω abbreviates an infinite tree path where A occurs consecutively,
and (AB)ω abbreviates an infinite path whereA andB occur alter-
nately. A ∃-node means that for every branch of the node, there is
a corresponding execution of the original program, while a ∀-node
means that for at least one of the branches, there is a correspond-
ing execution of the original program (the other branches may be
spurious, introduced by abstraction). An End-node describes the
termination. Thus, to prove that the original program has a fair infi-
nite execution trace (which is the goal of our method), it suffices to
show, roughly speaking, (i) for each ∃-node, there exists a fair infi-
nite path, and (ii) for each ∀-node, every branch has a fair infinite
path. These conditions are formally described by the tree automa-
tonAC . The tree in Figure 2 indeed satisfies the property mentioned
above; if we choose the right branches for both ∃-nodes, then we
get two infinite paths B(AB)ω and BABω , which are both fair
under {(A,B)}.

To see how an abstract program may be constructed, consider
the following program P3, which is a continuation passing style



(CPS) version of program P2 above:

rand k = f ∗int k

f r k = if 0 ≤ r then (event B; k r)

else (event A; k r)

randpos k = rand (λx.if 0 < x then k x else randpos k)

main = randpos λx.x.

Suppose that we have chosen the predicate 0 < n for abstracting
every integer n. Then we get the following abstract program QP3 :

rand k = ∃(f false k, f true k)

f b0<r k = if b0<r then B(k(b0<r))

else ∀(A(k(b0<r)), B(k(b0<r)))

randpos k = rand (λb0<x.

if b0<x then k b0<x else randpos k)

main = randpos (λb0<x.End).

Here, the integer variables r and x have been replaced by Boolean
variables b0<r and b0<x, which respectively represent whether the
values of r and x in the original program are positive or not. Event
expressions have been replaced by unary tree constructorsA andB.
In addition, we have inserted tree constructors ∃ and ∀. In the body
of rand in P3, the value returned by ∗int may be positive or not.
Thus, in QP3 , we create two subtrees by f false k and f true k,
which describe executions for the cases where negative and non-
negative values have been returned respectively; we then combine
them with ∃, to indicate that, to prove that the program has a fair
infinite execution, it suffices to show that one of the subtrees has a
fair infinite path. In the body of f inQP3 , the conditional branch on
r in the original program has been replaced by that on b0<r . If b0<r

is true, then the original condition 0 ≤ r is also true, so we create
a tree describing the computation of the then-branch of the original
program. If b0<r is false, then the original condition 0 ≤ r may
be true or false; thus we create two subtrees for describing both
cases, and combine them with a ∀-node, to indicate that, to prove
that the program has a fair infinite execution, we need to show that
both subtrees have a fair infinite path (since, due to the abstraction,
we do not know which subtree describes the actual computation of
the original program). The tree generated by the abstract program
is shown in Figure 3, where the two ∃-subtrees at the bottom are
identical to the whole tree; so it is the regular tree X defined by:2

X = ∃(∀(A(X), B(X)), B(End)).

In Step 2, we use higher-order model checking to check whether
the tree generated by the abstract program QP is accepted by the
tree automaton AC ; recall that AC describes a sufficient condition
for the original program P to have a fair non-terminating execution
trace. The tree generated by the abstract program QP3 given above
actually does not satisfy the sufficient condition. To show the exis-
tence of a fair non-terminating execution, for each ∃-node, we have
to choose the left branch; however, if we choose the left branch of
every ∀-node, we get an event sequence Aω = AAA · · ·, which
is unfair with respect to {(A,B)}. In such a case, we let a higher-
order model checker output a counterexample, which is a subtree
of the tree generated by QP , showing why the tree is not accepted
by AC . Actually, since such a subtree is infinite in general, we gen-
erate a (higher-order) tree grammar that generates the subtree as a
counterexample, and pass it to Step 3. For the example above, the

2 The tree generated by an abstract program is not necessarily regular in
general.
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Figure 3: The tree generated by QP3 .

counterexample can be described by the grammar:

X = ∃(∀(A(X), ), B(End)).

In Step 3, we analyze the counterexample, and if it is spurious,
discover predicates to refine the abstraction. This may sound stan-
dard, but it is actually non-trivial, since the counterexample is an
infinite tree and it has two kinds of branching nodes ∀ and ∃.

For the example above, suppose that a new predicate 0 ≤ r has
been discovered in Step 3. Then we go back to Step 1, and obtain
the following refined version of the abstract program:

rand k =
∃(f(false, false) k, f(true, false) k, f(true, true) k)

f (b1, b2) k = if b1 then B(k(b1, b2)) else A(k(b1, b2))
randpos k = rand (λ(b1, b2).

if b2 then k(b1, b2) else randpos k)
main = randpos (λx.End).

Now each integer value has been abstracted to a pair of Booleans
b1, b2, which represent whether the original value r satisfies 0 ≤ r
and 0 < r respectively. The tree generated by the new abstract
program is the regular tree Y defined by:

Y = ∃(A(Y ), B(Y ), B(End)).

By choosing the second branch of each ∃-node, we get an infinite
event sequence Bω = BBB · · · that is fair under {(A,B)}. Thus,
we can finally conclude that the original program P3 is not fair
terminating under {(A,B)}.

The overall flow outlined above is similar to Kuwahara et al.’s
method [22] for disproving plain termination. Each step, however,
requires non-trivial extensions of their method.

• First, in Step 1, to describe the condition required for the tree
generated by an abstract program, we need alternating parity
tree automata (APT; or equi-expressive automata like Streett
automata); in the case of Kuwahara et al.’s method [22], (co-
)trivial automata [1] were sufficient. As a consequence, in
Step 2, we need a higher-order model checker for the full class
of APT [10, 25]; in Kuwahara et al.’s method, a trivial automata
model checker was sufficient. To our knowledge, this is the
first serious application of higher-order model checking for the
full class of APT to verification of infinite-data higher-order
programs.
• Second, as explained through the example, we need a higher-

order model checker capable of generating a higher-order tree
grammar as a description of a counterexample. Unfortunately,
the existing higher-order model checkers for APT did not have
this feature. We have applied a technique called effective selec-
tion [3, 13, 32] and implemented the counterexample genera-



P (programs) ::= {fi x̃i = ei}i∈{1...n}
e (expressions) ::= () | event A; e | y ṽ

| if a then e1 else e2

| let x = a in e | let x = ∗int in e

a (simple expressions) ::= n | x | op(ã)

v (values) ::= n | y ṽ

f x̃ = e ∈ P |x̃| = |ṽ|

f ṽ
ε−−→P [ṽ/x̃]e

(E-APP)

JaK = n

let x = a in e
ε−−→P [n/x]e

(E-LET)

n 6= 0

if n then e1 else e2
ε−−→P e1

(E-IFT)

if 0 then e1 else e2
ε−−→P e2 (E-IFF)

let x = ∗int in e
ε−−→P [n/x]e (E-RAND)

event A; e
A−−→P e (E-EV)

Figure 4: The syntax and operational semantics of the source lan-
guage.

tion feature. The technique of effective selection has only been
investigated in a theoretical community (without much consid-
eration on the practicality); ours is the first realistic implemen-
tation of effective selection.
• Third, in Step 3, we need to discover predicates from (grammar

descriptions of) infinite counterexample trees; In Kuwahara et
al.’s method, counterexamples were finite trees.

We have formalized the overall method, implemented an automated
tool for disproving fair termination, and confirmed the effectiveness
of the approach through experiments.

The rest of this paper is structured as follows. Section 2 intro-
duces the language used as the target of our verification method.
Sections 3–5 describe each step of our method. Section 6 reports
implementation and experiments. Section 7 discusses related work
and Section 8 concludes the paper.

2. Language
This section defines the target language of our verification method,
and defines the notion of fair termination formally.

The language is a simply typed, call-by-value higher-order func-
tional language. The syntax of the language is shown in Figure 4.
In the figure, x̃ abbreviates a sequence x1, . . . , xk (similarly for
ṽ and ã); we write |x̃| for the length of the sequence x̃. A pro-
gram consists of a finite set of mutually recursive function defini-
tions. We assume that there exists i such that fi = main, which is
the “main” function, and |x̃i| = 0. We call |x̃i| the arity of func-
tion fi. The expression () represents the unit value. For the sake
of simplicity, we assume that programs are represented in the CPS
style; thus every function returns the unit value. The expression
event A; e raises an event A, and then evaluates e. We assume a

finite set of events, and use meta-variablesA andB for them. Event
expressions are just used for signaling that certain control points
have been reached; as demonstrated in Section 1, they are useful
for specifying program properties. The expression y ṽ represents
a function call, where y may be a variable or a function name fi.
The value vi that may be passed to y is either an integer, a variable
(the special case of y ṽ where |ṽ| = 0), or a partial application
(thus, |ṽ| must be smaller than the arity of y). The conditional ex-
pression if a then e1 else e2 evaluates e2 if the value of a is 0,
and e1 otherwise. We sometimes write true for 1 and false for
0. The meta-variable a ranges over the set of simple expressions,
which consists of integers (ranged over by the meta-variable n),
variables, and integer operators. The meta-variable op ranges over
a set of integer operators; we assume that we have standard primi-
tives like +,=, <, and ≤ (where =, <,≤ are assumed to return 0
or 1, based on the interpretation of Booleans above). The expres-
sion let x = ∗int in e picks an integer in a non-deterministic
manner, binds x to it, and evaluates e.3

The operational semantics of the language is given via a labeled

reduction relation e l−−→P e′, which is defined in Figure 4. In the
figure, JaK stands for the value of the simple expression a. Label l is
either an event symbol or the empty sequence ε. We write e s−−→∗P e′

if e l1−−→P · · ·
ln−−→P e′ with s = l1 · · · ln. We omit the subscript P

if it is clear from the context.
We consider only well-typed programs. The syntax of types and

the typing rules are given in Figure 5. The type int and ? describe
integers and the unit value, respectively. The type τ1 → τ2 de-
scribes functions from τ1 to τ2. We assume τ1 6= ? in τ1 →
τ2. In typing rules, we abbreviate τ1 → · · · → τn → ? and
x̃1 : τ̃1, . . . , x̃n : τ̃n to τ̃ → ? and x̃i : τ̃i, respectively. The typ-
ing rules are standard, except that the body of each function defi-
nition must have type ?. This requirement is imposed for the sake
of convenience for formalizing the predicate abstraction in the next
section. Note that we do not lose generality because we can ap-
ply continuation-passing-style (CPS) transformation to ensure that
every function satisfies the requirement; the type ? corresponds to
the answer type in CPS. These restrictions are just for the technical
convenience for formalizing the method; the actual implementation
reported in Section 6 does not impose such restrictions.

Example 1. The program P3 in Section 1 is expressed as the
following program P ′3 in our language:

rand k = let r = ∗int in f r k
f r k = if 0 ≤ r then (event B; k r) else (event A; k r)
randpos k = rand (g k)
g k x = if 0 < x then k x else randpos k
main = randpos h
h x = ().

For readability, we sometimes use λ-abstractions (as in Section 1).
The main function main is reduced as follows.

main ε−−→P ′3
randpos h

ε−−→P ′3
rand (g h)

ε−−→∗P ′3 f 0 (g h)

B−−→∗P ′3g h 0
ε−−→∗P ′3 randpos h

B−−→∗P ′3 randpos h
B−−→∗P ′3 · · ·

Thus, the program has an infinite execution sequence labeled by
Bω = BBB · · ·.

We now define the notion of fair termination.

3 Thus, contrary to the explanation in Section 1, we do not assume the
randomness or fairness of ∗int a priori. That ∗int returns values in a fair
manner should be declared using events and fairness constraints as done in
Section 1.



Types:

τ ::= int | ? | τ1 → τ2

Typing for expressions:

∆ `ST () : ?

∆ `ST e : ?

∆ `ST event A; e : ?

∆(y) = τ1 → · · · → τk → τ
∆ `ST vi : τi (for all i ∈ {1, . . . , k})

∆ `ST y v1 · · · vk : τ

∆ `ST a : int ∆ `ST e1 : ? ∆ `ST e2 : ?

∆ `ST if a then e1 else e2 : ?

∆ `ST a : int ∆, x : int `ST e : ?

∆ `ST let x = a in e : ?

∆, x : int `ST e : ?

∆ `ST let x = ∗int in e : ?

Typing for simple expressions:

∆ `ST n : int

∆ `ST ai : int (for each i ∈ {1, . . . , ar(op)})
∆ `ST op(a1, . . . , ak) : int

Typing for programs:

∆ = f1 : τ̃1 → ?, . . . , fk : τ̃k → ? ∆(main) = ?
∆, x̃i : τ̃i `ST ei : ? (for each i ∈ {1, . . . , k})
`ST {f1 x̃1 = e1, . . . , fk x̃k = ek} : ∆

Figure 5: Simple type system of the source language.

Definition 2.1 (Fairness constraints). A (Streett) fairness con-
straint C is a set of event pairs {(A1, B1), . . . , (An, Bn)}.
Definition 2.2 (Fairness). Let C be a fairness constraint and s be
a possibly infinite sequence of events. The sequence s is fair with
respect to C when, for every (Ai, Bi) ∈ C, if Ai occurs infinitely
often in s, then so does Bi.

Definition 2.3 (Fair Termination). Let C be a fairness constraint
and P be a program. P is fair terminating under C if there exists
no infinite reduction sequence

main l1−−→P e1
l2−−→P e2

l3−−→P · · · ,
such that the event sequence l1l2l3 · · · is fair with respect to C.

In other words, a program is fair terminating if every non-
terminating reduction sequence is unfair. Note that plain termina-
tion is a special case of fair termination, where the fairness con-
straint C is empty.

Example 2. Recall the program P ′3 in Example 1. It is not fair
terminating under {(A,B)} because it has a fair infinite reduction

sequence:

main B−−→∗P ′3 randpos h
B−−→∗P ′3 randpos h

B−−→∗P ′3 · · ·

Let P4 be the program obtained from P ′3 by replacing the condition
0 < x in the function g with 0 ≤ x. P4 is fair terminating, as every
infinite reduction sequence must be of the form:

main A−−→∗P4
randpos h

A−−→∗P4
randpos h

A−−→∗P4
· · · ,

which is not fair.

The goal of the present paper is to develop an automated method
for disproving the fair termination of a given program under a
given fairness constraint. In other words, we develop a method
for verifying that a given program has a fair infinite reduction
sequence.

3. Step 1: Reduction to Higher-Order Model
Checking

The task of Step 1 is to convert a given program P and a fairness
constraint C to an abstract program DP and a tree automaton AC
respectively. The former generates a tree that abstracts possible
execution traces of the program, and the latter describes a sufficient
condition on the tree generated by DP in order for P to have a
fair non-terminating execution trace. The construction of DP is
actually almost the same as Kuwahara et al.’s work [22], except
that we have event primitives. To make the paper self-contained,
however, we briefly describe it in Section 3.1. The construction of
AC is new, which is described in Section 3.2.

3.1 Construction of the Abstract Program DP

In addition to a source program, we assume that we are given
predicates used for abstracting each integer. They are supplied by
Step 3; initially, the set of predicates is empty. The predicates used
for abstraction are actually specified in the form of types called
abstraction types, so that we can use different predicates for each
position in the source program. The set of abstraction types is given
by:

σ (abstraction types) ::= ? | int[Q1, . . . , Qk] | x : σ1 → σ2

Q (predicates) ::= λx.ϕ
ϕ (formulas) ::= n1x1 + · · ·+ nkxk ≤ n | ϕ1 ∨ ϕ2 | ¬ϕ.

The type ? is the unit type and, the type int[Q1, . . . , Qk] de-
scribes integers n that should be abstracted to a tuple of Booleans
(Q1(n), . . . , Qk(n)). For example, the integer 3 is abstracted by
the abstraction type int[λx. x = 0, λx. x > 0] to (false, true).
The dependent function type x : σ1 → σ2 describes functions that
takes a value x of type σ1 and returns a value of type σ2. When
x does not occur in σ2, we just write σ1 → σ2. We assume that,
along with a program P , we are given an abstraction type σi for
each function fi in P . For example, for the program P ′3 in Exam-
ple 1, we may be given the following types for functions:

rand : (int[λx.0 < x]→ ?)→ ?
f : int[λx.0 < x]→ (int[λx.0 < x]→ ?)→ ?
randpos : (int[λx.0 < x]→ ?)→ ?
g : (int[λx.0 < x]→ ?)→ int[λx.0 < x]→ ?
main : ?
h : int[λx.0 < x]→ ?,

which specifies that every integer should be abstracted using the
predicate λx.0 < x.

We use the language given in Figure 6 for describing abstract
programs. It is a simply-typed, higher-order functional language
having Booleans, tuples, and tree constructors as primitive data
constructors. As in the source language, a program consists of a



finite set of mutually recursive function definitions; we assume it
contains a definition of the main function main. The language has
five kinds of tree constructors: A (for each event name A), Call,
End, ∀i, and ∃i. The constructor A and Call are unary; they are
used to express the occurrences of event A and a function call
respectively. The constructor End is nullary, and used to express
the termination of the source program P . The i-ary constructor
∀i is used to express that only one of the branches is guaranteed
to correspond to an execution of the source program P ; the other
branches may be spurious. Thus, for the purpose of proving the
existence of a fair infinite execution, it suffices to show that all
the branches have fair infinite paths, hence the name of the tree
constructor “∀”. On the other hand, the i-ary constructor ∃i is
used to express that every branch corresponds to an execution of
the source program P . Thus, it suffices to show that one of the
branches has a fair infinite path.

The expression ∀{ψ1 → M1, . . . , ψk → Mk} (∃{ψ1 →
M1, . . . , ψk → Mk}, resp.) generates a node with label ∀ (∃,
resp.), and for each i ∈ {1, . . . , k}, evaluates ψi and add the tree
generated by Mi as a child of the node only if the value of ψi is
true. The Boolean expression ]i(x) is the i-th projection of the
tuple x. For example, if x1 = (true) and x2 = (true, false),
then ∀{]1(x1)→ A(End), ]2(x2)→ B(End), ]1(x1)∨ ]2(x2)→
End} evaluates to ∀2(A(End), End). When x is a singleton tuple,
we often omit ]1 and just write x for ]1(x). The meaning of the
other expressions should be clear.

The construction of DP is formalized as the type-based trans-
formation relations Γ ` e : σ  M and ` P : Γ  D de-
fined in Figure 7. The former means that the expression e in the
source language can be abstracted to the expression M under the
assumption that each free variable x is abstracted according to the
abstraction type Γ(x), and the latter means that the source program
P should be abstracted to D under the assumption that each func-
tion f should be abstracted according to the abstraction type Γ(f).
In the figure, |= ϕ means that ϕ is a tautology. The expression
biQi(x) stands for Qi(x) if bi is true and ¬Qi(x) otherwise. The
expression θΓ represents the substitution that replaces each variable
x of type int[Q1, . . . , Qn] in Γ with (Q1(x), . . . , Qn(x)). For ex-
ample, let Γ be x : int[λx. x ≥ 0], y : int[λy. y = 0, λy. y > x],
then θΓ(]1(x) ∨ ]2(y)) = ]1(x ≥ 0) ∨ ]2(y = 0, y > x) = x ≥
0 ∨ y > x.

The rule PA-EVENT just turns an event constructor A into the
tree constructor. Since the other transformation rules are the same
as Kuwahara et al.’s ones [22], we briefly explain only the key
rules: PA-IF and PA-RAND. The rule PA-IF over-approximates
the computation of a source program, since, due to an abstraction,
we may not know which branch is actually taken. For example,
consider the conditional expression if 0 < x then e1 else e2,
and suppose that the abstraction type of x is int[λx.0 ≤ x]. Then,
if the abstraction of x is false, we know that 0 < x is false,
so that only the else branch is taken. However, if the abstraction
of x is true, we only know that the value of x is zero or positive,
so that both branches are possible. We thus convert the conditional
expression above to:

∀{x→M1, true→M2},

where Mi is an abstraction of ei. The expression evaluates to
∀1(M2) if x is false, and ∀2(M1,M2) otherwise. In this way,
a deterministic computation step of a source program may be over-
approximated by non-deterministic branches, but it is maintained
that one of the branches corresponds to the actual computation.

In contrast, the rule PA-RAND under-approximates the compu-
tation of a source program. That is because, due to an abstraction,
we may not know whether some branch exists. For example, con-
sider the expression let x : int[λx.0 ≤ x < y] = ∗int in e.

D (programs) ::= {fi x̃i = Mi}i∈{1...n}
M (expressions) ::= c(M1, . . . ,Mk) | y Ṽ

| let x = (b1, . . . , bk) inM

| ∀{ψ1 →M1, . . . , ψk →Mk}
| ∃{ψ1 →M1, . . . , ψk →Mk}

b (Booleans) ::= true | false

V (values) ::= (b1, . . . , bk) | y Ṽ
c (tree constructors) ::= A | Call | End | ∀i | ∃i
ψ (Boolean exp.) ::= b | ]i(x) | ψ1 ∨ ψ2 | ¬ψ
E (eval. context) ::= [ ]

| c(M1, . . . ,Mi−1, E,Mi+1, . . . ,Mn)

E[let x = (b1, . . . , bk) inM ]→D E[[(b1, . . . , bk)/x]M ]

f x1 . . . xk = M ∈ D
E[f V1 · · ·Vk]→D E[[V1/x1, . . . , Vk/xk]M ]

{ψi | i ∈ {1, . . . , k}, JψiK = true} = {ψi1 , . . . , ψi`}
E[∀{ψ1 →M1, . . . , ψk →Mk}]→D E[∀`(Mi1 , . . . ,Mi`)]

{ψi | i ∈ {1, . . . , k}, JψiK = true} = {ψi1 , . . . , ψi`}
E[∃{ψ1 →M1, . . . , ψk →Mk}]→D E[∃`(Mi1 , . . . ,Mi`)]

Figure 6: The syntax and operational semantics of the language of
abstract programs.

The abstraction type int[λx.0 ≤ x < y] specifies that the random
number x should be abstracted to the Boolean value representing
whether 0 ≤ x < y holds. Thus, we basically replace the gen-
eration of a random integer with that of a random Boolean. How-
ever, depending on the actual value of y, we may not know whether
0 ≤ x < y can be true. Thus, for example, if the abstraction type
of y is int[λy.2 < y], then we abstract the expression to:

∃{y → let x = true inM, true→ let x = false inM},

where M is an abstraction of e. Thus, the branch for x = true is
created only when (the abstract value of) y is true (which means
that 2 < y holds in the original computation). The expression
evaluates to ∃2(let x = true in M, let x = false in M)
if y = true, and ∃1(let x = false inM) otherwise.

Example 3. Recall the program P ′3 in Example 1. Let Γ be

rand : (int[λx. 0 < x]→ ?)→ ?

f : int[λx. 0 < x]→ (int[λx.0 < x]→ ?)→ ?

g : (int[λx. 0 < x]→ ?)→ int[λx.0 < x]→ ?

randpos : (int[λx.0 < x]→ ?)→ ?

main : ?,



Γ ` () : ? End
(PA-UNIT)

Γ ` e : σ  M

Γ ` event A; e : σ  A(M)
(PA-EVENT)

Γ, x : int[Q1, . . . , Qk] ` e : ? M
|= b1Q1(a) ∧ · · · ∧ bkQk(a)⇒ θΓψ(b1,...,bk)

(for each b1, . . . , bk ∈ {true, false})
Γ ` let x : int[Q1, . . . , Qk] = a in e : ? 

∀
{
ψ(b1,...,bk) →
let x = (b1, . . . , bk) inM

∣∣∣∣ b1, . . . , bk ∈ {true, false}}
(PA-SEXP)

|= a 6= 0⇒ θΓψ1 |= a = 0⇒ θΓψ2

Γ ` e1 : ? M1 Γ ` e2 : ? M2

Γ ` if a then e1 else e2 : ? ∀{ψ1 →M1, ψ2 →M2}
(PA-IF)

Γ, x : int[Q1, . . . , Qk] ` e : ? M
|= θΓψ(b1,...,bk) ⇒ ∃x.b1Q1(x) ∧ · · · ∧ bkQk(x)

(for each b1, . . . , bk ∈ {true, false})
Γ ` let x : int[Q1, . . . , Qk] = ∗int in e : ? 

∃
{
ψ(b1,...,bk) →
let x = (b1, . . . , bk) inM

∣∣∣∣ b1, . . . , bk ∈ {true, false}}
(PA-RAND)

Γ(y) = x1 : σ1 → · · · → xk : σk → σ
Γ ` vi : [v1/x1, . . . , vi−1/xi−1]σi  Vi

(for each i ∈ {1, . . . , k})
Γ ` y v1 · · · vk : [v1/x1, . . . , vk/xk]σ  y V1 · · ·Vk

(PA-APP)

{fi x̃ : σ̃i → ?}i∈{1,...,k}, x̃ : σ̃j ` ei : ? Mi

(for each j ∈ {1, . . . , k})
` {fix̃i = ei}i∈{1,...,k} : {fi : x̃ : σ̃i → ?}i∈{1,...,k}  

{fi x̃i = Call(Mi)}i∈{1,...,k}
(PA-PROG)

Figure 7: Predicate abstraction rules.

thenP ′3 is abstracted to the following programDP ′3
(i.e., ` P ′3:Γ 

DP ′3
):

rand k = Call(∃{true→ let r = false in f r k,

true→ let r = true in f r k})
f b0<r k = Call(∀{true→ B(k(b0<r)),

¬b0<r → A(k(b0<r))})
randpos k = Call(rand (g k))

g k b0<x = Call(∀{b0<x → k b0<x,¬b0<x → randpos k})
main = Call(randpos (λb0<x. End)).

Here, we use type int[λr. 0 < r] for the type of r in the body of
rand . The constructor Call has been inserted to the body of each
function definition, according to rule PA-PROG. This ensures that
every infinite reduction sequence has an infinite sequence of labels.
The tree generated by DP ′3

is shown in Figure 8; we have omitted
Call nodes for the sake of simplicity.

3.2 Construction of the Tree Automaton AC
We now construct a tree automaton AC , which expresses a suffi-
cient condition on the tree generated by DP for P to have a fair
infinite execution trace. As already explained, the condition is, in-
formally, that (i) every branch of ∀-node has an fair infinite path,
and (ii) at least one of the branches of ∃-node has an fair infinite

∃2

∀1

B

∀1

End

∀2

A

∀1

X

B

∀1

X

Figure 8: The tree generated by DP ′3
. Here X is the same as the

whole tree.

path. That condition can be easily expressed by a Streett automaton
(for infinite trees). For the sake of simplicity, we assume below that
the arities of all the ∀ and ∃ nodes are 2; note that ∀i(T1, . . . , Ti)
can be replaced by ∀2(T1, ∀2(T2, ∀2(· · · ∀2(Ti−1, Ti) · · · ))).

We first review the definition of Streett automata. We write
P(X) for the powerset of X .

Definition 3.1 (Σ-labeled trees). A tree is a set f of sequences of
positive integers, such that whenever πi ∈ f , {π} ∪ {πj | 1 ≤
j < i} ⊆ f . Let Σ be a ranked alphabet, i.e., a map from a finite
set of symbols to the set of non-negative integers (called arities).
A Σ-labeled tree is a map T from a tree to dom(Σ), such that for
every π ∈ dom(T ), {i | πi ∈ dom(T )} = {1, . . . ,Σ(T (π))}.

Definition 3.2 (Streett automata). Let Σ be a ranked alphabet.
A non-deterministic Streett tree automaton is a quintuple A =
(Σ, Q, δ, q0, C) where

• Σ is a ranked alphabet,
• Q is a finite set of states,
• δ, called a transition function, is a map from Q × dom(Σ) to
P(Q∗). Whenever q1 · · · q` ∈ δ(q, a), it must be the case that
` = Σ(a).
• q0 ∈ Q is an initial state, and
• C, called a Streett acceptance condition, is of the form
{(E1, F1), . . . , (Ek, Fk)}, where Ei, Fi ⊆ Q.

A run-tree R of A over a Σ-labeled tree T is a tree obtained from
T by annotating each node of T with an element of Q, so that

• The root node is annotated with q0
• If a node with label a is annotated with q, then there must

exist q1 · · · q` ∈ δ(q, a) such that the i-th child of the node
is annotated with qi for each i ∈ {1, . . . , `}.

A run-tree R is accepting if, for every infinite path π of R and
every i ∈ {1, . . . , k}, if an element of Ei occurs infinitely often in
π, then some element of Fi must also occur infinitely often in π.
We write Lang(A) for a set of trees accepted by A.

We can now define AC as a Streett automaton for a fairness
constraint C.

Definition 3.3 (AC). Let Ev be the finite set of event names that
occur in a given program, and let C = {(A1, B1), · · · , (An, Bn)}
(where {A1, B1, . . . , An, Bn} ⊆ Ev) be a fairness constraint. A
Streett tree automaton AC is defined by:

AC = (Σ, {q0, q⊥} ∪ {qA | A ∈ Ev}, δ, q0, C)



where

Σ = {End 7→ 0, Call 7→ 1, ∀ 7→ 2, ∃ 7→ 2} ∪
{A 7→ 1 | A ∈ Ev}

δ(q, End) =

{
{ε} if q = q⊥
∅ otherwise

δ(q, Call) =

{
{q⊥} if q = q⊥
{q0} otherwise

δ(q,∀) =

{
{q⊥q⊥} if q = q⊥
{q0q0} otherwise

δ(q,∃) =

{
{q⊥q⊥} if q = q⊥
{q0q⊥, q⊥q0} otherwise

δ(q,A) =

{
{q⊥} if q = q⊥
{qA} otherwise

C = {({qA1}, {qB1}), . . . , ({qAn}, {qBn})}.
The automaton just sets the next state to the event label of the

current node, and then checks that the fairness condition holds
by using the acceptance condition. Upon visiting a ∀-node, the
automaton checks every branch, whereas upon visiting a ∃-node,
it picks only one of branches, and ignores the other branch (with
state q⊥, from which any tree is accepted).

The following theorem states the soundness of our reduction.

Theorem 1 (Soundness). Let P be a program and C be a fairness
constraint. If Tree(DP ) ∈ Lang(AC), then P is NOT fair termi-
nating under C.

Proof sketch. Let e be an expression of the source language and
suppose that ` P : Γ  DP and Γ ` e : ?  M . Then, the
reductions of M can be simulated by those of e in the following
sense.

• If M −→∗ ∀k(M1, . . . ,Mk),4 then there exists i such that
e
ε−−→∗P e′, Γ ` e′ : ?  M ′i , and Mi −→∗ M ′i for some e′

and M ′i
• If M −→∗ ∃k(M1, . . . ,Mk), then for every i ∈ {1, . . . , k},

there exist e′ and M ′i such that e ε−−→∗P e′, Γ ` e′ : ?  M ′i ,
and Mi −→∗ M ′i .
• If M −→∗ A(M ′), then there exist e′ and M ′′ such that

e
A−−→∗P e′, Γ ` e′ : ? M ′′, and M ′ −→∗ M ′′.

• If M −→∗ Call(M ′), then there exist e′ and M ′′ such that
e
ε−−→+

P e
′, Γ ` e′ : ? M ′′, and M ′ −→∗ M ′′.

We omit the proof of these facts since it is almost the same as that
of the corresponding theorem in [22]. Now, suppose that Tree(DP )
is accepted by AC , i.e., there exists an accepting run-tree R of AC
over Tree(DP ). Let e = M = main. We can construct a fair
infinite execution path of P from the triple (e,M,R) as follows.

• If R = ∀qk(R1, . . . , Rk), then M −→∗ ∀k(M1, . . . ,Mk),
where Ri is a run-tree for the tree generated by Mi, and the
root of each Ri is annotated with q0. By the simulation prop-
erty above, there must be a corresponding execution sequence
e
ε−−→∗P e′ such that e′ “simulates” Mi. Thus, we continue the

construction for (e′,Mi, Ri).
• If R = ∃qk(R1, . . . , Rk), then M −→∗ ∃k(M1, . . . ,Mk)

where Ri is a run-tree for the tree generated by Mi. By the
construction of AC , there exists i such that the root of Ri

is annotated with q0. By the simulation property above, there
must be a corresponding execution sequence e ε−−→∗P e′ such

4 Here, for the sake of simplicity, we assumeAC is extended to handle k-ary
∀ and ∃ symbols directly, without the encoding using binary symbols.

that e′ simulates Mi. Thus, we continue the construction for
(e′,Mi, Ri).
• If R = Aq(R1), then M −→∗ A(M1) where R1 is a run-tree

for the tree generated by M1, and the root of R1 is annotated
with qA. By the simulation property above, there must exist e′

such that e A−−→∗P e′ and e′ simulates M1.
• If R = Callq(R1), then M −→∗ Call(M1) where R1 is

a run-tree for the tree generated by M1, and the root of R1 is
annotated with q0. By the simulation property above, there must
exist e′ such that e−−→+

P e
′ and e′ simulates M1.

SinceR is an accepting run-tree, we can continue the process above
indefinitely and obtain an infinite execution sequence

main A1−−→∗P e1
A2−−→∗P e2

A3−−→∗P e3
A4−−→∗P · · · .

Since R satisfies the acceptance condition, the sequence of events
A1A2A3A4 · · · must be fair.

4. Step 2: Higher-Order Model Checking
The task of Step 2 is, given an abstract program DP and a tree
automaton AC produced in Step 1, to check whether the tree gen-
erated by DP (i.e., Tree(DP )) is accepted by AC , and generate a
counterexample if the answer is negative. Whether Tree(DP ) ∈
Lang(AC) holds can be decided by using an existing APT higher-
order model checker [9, 10, 25], but we need to add the func-
tionality to generate a counterexample. Below we briefly review
higher-order model checking [28] and explain how to use it to de-

cide Tree(DP )
?
∈ Lang(AC) in Section 4.1. We then describe the

new method for counterexample generation in Section 4.2.

4.1 Higher-Order Model Checking
Higher-order model checking is the problem of deciding whether
the tree generated by a given higher-order recursion scheme
(HORS) is accepted by a given tree automaton. A HORS is es-
sentially a simply-typed, tree-generating higher-order functional
program. It consists of the following mutually recursive function
definitions:

main = t0
f1 x1,1 · · · x1,k1 = t1
· · ·
fn xn,1 · · · xn,kn = tn

where main is the main function (or the start symbol, in the ter-
minology of formal grammars), and ti is an applicative term con-
structed from variables, functions, and tree constructors. Its syntax
is given by:

t ::= x | f | A | t1t2,

where A ranges over a finite set of tree constructors.5 It is decid-
able whether the tree generated by a HORS is accepted by a tree
automaton [28], and a few model checkers are available that sup-
port alternating parity tree automata (APT) [9, 10, 25]. Thus, we
just need to convert DP and AC to a HORS and an APT.

An abstract program can be easily converted to HORS, by
applying Church encoding to Boolean values. For example, the

5 The usual convention of HORS is to use upper letters for function sym-
bols (called non-terminals) and lower letters for tree constructors. We use
the opposite (lower letters for function symbols and variables, and upper
letters for tree constructors), following the usual convention for functional
programs.



program:

rand k = Call(∃{true→ m true k, true→ m false k})
mr k = ∀{true→ B (k r),¬r → A (k r)}
g x = Call(∀{x→ End,¬x→ rand g})

main = rand g

can be converted to:
main = rand g
rand k = Call(∃2 (m true k) (m false k))
mr k = if r (∀1 (B(k r)))(∀2 (B(k r)) (A(k r)))
g x = Call(ifx (∀1 End) (∀1 (rand g)))
if b x y = b x y
truex y = x
falsex y = y.

As for tree automata, Streett tree automata and APT are actually
equi-expressive, and we can use the standard technique [12] to
convert AC to an equivalent APT.

4.2 Counterexample Generation
As already explained, when Tree(DP ) is not accepted by AC , we
need to generate a counterexample and pass it to Step 3. By the
discussion above, we may assume that DP and AC are a HORS
and an APT respectively.

A counterexample is a part of the tree Tree(DP ) that violates
the property described by AC . More formally, let A⊥ be the au-
tomaton obtained from A by adding a new nullary symbol ⊥,
which is blindly accepted from any state. A counterexample against
Tree(D) ∈ Lang(A) is a minimal6 tree T obtained by replacing
some subtrees of Tree(D) with ⊥, such that T 6∈ Lang(A⊥). In
the case of our problem whereD = DP andA = AC , a counterex-
ample is a tree T obtained from Tree(DP ) by replacing all but one
branch of each ∀-node with ⊥, such that every path of T is either
finite or unfair. For example, for the tree (shown in Figure 8) gen-
erated by DP ′3

in Example 3, a counterexample is the tree obtained
by replacing the first branch of every ∀2-node with ⊥.

Since a counterexample defined above may be infinite in gen-
eral, we use a HORS (or, a tree-generating functional program) as
a finite representation of a counterexample. For example, the coun-
terexample mentioned above is expressed by the following HORS
consisting of a single function main:

main = ∃2 (∀2 ⊥ (A (∀1 main))) (∀1(B (∀1 End))).

We have extended HorSatP [9] with the functionality to gener-
ate a counterexample (in the form of a HORS); the same extension
would also be applicable to other higher-order model checkers for
APT [10, 25]. The key ideas in our counterexample generation are
as follows.

• If Tree(D) 6∈ Lang(A), then Tree(D) is accepted by the
complement A of A, and a counterexample tree is the part of
Tree(D) visited by A when Tree(D) is accepted by A.7

• A HORS representation of a run-tree of A (which describes
how A traverses nodes of Tree(D)) can be constructed by a
technique called effective selection [3, 13, 32]. By modifying it
(replacing the label of each node of the run-tree with the symbol
read by the corresponding transition of the automaton), we can
obtain (a HORS representation of) a counterexample.

6 With respect to the least compatible relation such that ⊥ ≤ T for every
tree T .
7 To ensure the minimality, we need to assume thatA visits as few nodes as
possible. Fortunately, for AC , it is easy to guarantee this: AC should visit
only one of the subtrees for each ∀-node.

• HorSatP (as well as other APT higher-order model check-
ers [10, 25]) is based on Kobayashi and Ong’s type system [18]
and constructs a type derivation (more precisely, a winning
strategy for the typability game [18]). Actually, the soundness
proof of Kobayashi and Ong’s type system [18] provides an ef-
fective algorithm for converting the type derivation to a run-tree
of A, which serves as a realistic algorithm for effective selec-
tion.

The detail of the counterexample generation method is deferred to
a full version of the paper, as understanding it requires knowledge
of APT and Kobayashi and Ong’s type system [18].

5. Step 3: Predicate Discovery
The task of Step 3 is, given a counterexample tree produced by
Step 2, to find new predicates (or abstraction types, more precisely)
to refine the predicate abstraction. Assume that a source program
P has a fair non-terminating execution sequence, but that Step 2
produces a counterexample. There are the following three possible
cases:

(I) A spurious error path (i.e., an unfair infinite path or a finite
path ending with End that does not correspond to any actual execu-
tion trace of P ) has been introduced by an over-approximation. For
example, consider the following expression of a source program:

if b then fair nonterminating() else
unfair nonterminating().

Suppose that b always evaluates to true in the source program,
but we cannot infer so during predicate abstraction. Then, the tree
generated by the abstract program is: ∀2(T1, T2), where T1 has a
fair infinite path, but T2 has only an unfair infinite path. Since we
require that both of the branches of ∀2 has a fair infinite path, the
tree is rejected and ∀2(⊥, T2) is generated as a counterexample.
In this case, we need to find a predicate necessary to infer that the
condition b is always true.

(II) A fair non-terminating execution sequence has been merged
with an unfair or terminating one by an approximation of random
integers. For example, consider the expression:

let x : int[ ] = ∗int in
if 0 < x then fair nonterminating() else
unfair nonterminating().

Here, the random number x is abstracted according to an empty
set of predicates. Then, the tree generated by the abstract program
is: ∃1(∀2(T1, T2)), where T1 has a fair infinite path, but T2 has
only an unfair infinite path. Note that no information is available
for deciding whether the condition 0 < x holds, so the conditional
branch has been replaced by the ∀-node with both branches. Thus,
the tree is rejected, and ∃1(∀2(⊥, T2)) is generated as a counterex-
ample. In this case, we need to add the predicate λx.0 < x to the
abstraction type of x. Then, the computations for the case 0 < x
and the case x ≤ 0 are split, and the abstract program would gener-
ate ∃2(∀1(T1), ∀1(T2)), which will be accepted by AC . Note that
the branching between fair and unfair paths have been moved from
the ∀-node to the ∃-node here.

(III) A fair non-terminating execution sequence has been re-
moved by an under-approximation. For example, consider the ex-
pression:

let x : int[λx.0 ≤ x < y] = ∗int in
if 0 ≤ x < y then fair nonterminating() else
unfair nonterminating().

Here, the random number x is abstracted according to the predicate
λx.0 ≤ x < y. If we do not have enough information to conclude
that there exists x such that 0 ≤ x < y, then the expression is



abstracted to:

∃{true→ let x = false in if x thenM1 elseM2},
which would generate ∃1(T2) where T2 contains only an unfair
infinite path. In this case, we need to add a predicate on y needed
to decide whether there exists x such that 0 ≤ x < y.

Kuwahara et al. [22] made a similar classification on the first
and second cases (where they needed to consider only terminating
paths as error paths), but overlooked the third case.

The first and second cases (I) and (II) above can be detected by
looking at each path of a counterexample tree. In the first case, T2 in
the example occurs as an infeasible (i.e., having no corresponding
execution in the source program) unfair or terminating path, and in
the second case, T2 in the example occurs as a feasible unfair or
terminating path. It is hard to detect the third case (III) from the
counterexample tree. We can, however, detect such a possibility
during the abstraction; in the rule PA-RAND in Figure 7, we can
apply the quantifier elimination to ∃x.b1Q1(x) ∧ · · · ∧ bkQk(x),
and add the resulting predicate to the abstraction type environment
Γ. In the example above, the required predicate 0 < y is indeed
obtained by the quantifier elimination of ∃x.0 ≤ x < y.

For dealing with cases (I) and (II), we pick each path of the
counterexample tree, and check whether a finite prefix of the path of
a certain length is feasible or not. If it is infeasible, we can conclude
that it belongs to case (I). In that case, we can apply the standard
technique [19] to find predicates to exclude out the infeasible path.
If the finite prefix is feasible, both cases are possible. We, however,
tentatively assume that (II) is the case, and find predicates to avoid
the merging of paths; for this purpose, we can apply Kuwahara
et al.’s technique for “Type II paths” [22]. During the CEGAR
cycle (consisting of Steps 1–3), we gradually increase the length
of the prefix. Although each path of a counterexample tree may be
infinite, in all the cases (I)-(III), the depth of each problematic ∃-
or ∀-node is finite, so that we can eventually eliminate it.

Example 4. Recall the program P ′3 in Example 1 and the coun-
terexample in Section 4.2. If we pick the path (∃2∀2A∀1)ω then
the path is feasible but unfair. This path occurs because there is no
information for deciding whether the condition 0 ≤ r in the body
of f when b0<r = false. In order to split the case 0 ≤ r, we pick
a finite prefix of the path, e.g., ∃2∀2A∀1. We find a sufficient con-
dition R(r) on the value of r in the body of rand, in order for P ′3
to have a reduction sequence not corresponding to ∃2∀2A∀1. The
constraint on R is expressed by:

∀r.(R(r)⇒ 0 ≤ r) ∧ ∃r.R(r).

Here, the part ∀r.(R(r)⇒ 0 ≤ r) expresses a sufficient condition
for the first branch of the body of function f to be chosen, and
the part ∃r.R(r) expresses the satisfiability ofR(r). We can obtain
R = λr.0 ≤ r as a solution of the constraint, and add it to the type
of r in the body of rand .

Remark 1. If a given program is actually fair terminating, either
the whole CEGAR cycle continues indefinitely, finding new (but
useless) predicates repeatedly, or Kuwahara et al.’s procedure for
“Type II paths” get stuck. The latter case happens, for example,
for the following program P , which is obviously fair-terminating
under {(Never, A)}:

main () = event A; main().

In this case, the abstract program DP generates the infinite tree
A(A(A(· · · ))), consisting of a single path, which itself is the
counterexample generated by a model checker. The path is feasible
(so it is not Type I), but since no two paths have been merged by
the abstraction, the procedure for Type II path gets stuck, failing to
find predicates to split the path. In such a case, our procedure in

Step 3 runs forever, looking for a longer path for which Type I or
Type II procedure is applicable.

6. Implementation and Experiments
This section reports an implementation and experimental results.

6.1 Implementation
We have implemented a tool for disproving fair termination as
an extension of MoCHi [19]. It takes a program of a subset of
OCaml, annotated with events and a fairness constraint, and tries
to prove that the program is not fair terminating under the fairness
constraint. Currently, the tool supports only singleton fairness con-
straints (i.e., those of the form {(A,B)}). As a higher-order model
checker, we have used HorSatP [9] and modified it to enable coun-
terexample generation. We used Z3 [8] as the back-end SMT solver
used for predicate abstraction and predicate discovery.

6.2 Experiments
We ran our tool against several programs, all of which are fair
non-terminating. The benchmark programs are written in an ex-
tension of the language in Section 2, where general let-expressions
(let x = e1 in e2), sequential compositions (e1; e2), etc. are
allowed. The experiments were conducted on a machine with In-
tel Xeon E5-2680 v3 (2.50GHz, 16GB of memory) with timeout of
300 seconds.

Table 1 shows the result of the experiments. The column “pro-
gram” shows the name of each program. The column “order” shows
the largest order of functions in the program. The column “cy-
cle” shows the number of CEGAR cycles. The columns “step 1”,
“step 2”, and “step 3” show the times spent for each step, all mea-
sured in seconds. The column “total” shows the total running time.

The programs of name xx-buggy are variants of the benchmark
programs in [24]; the original programs are fair terminating, and we
have modified them to introduce fair non-termination. We briefly
explain some of the other programs below. All the benchmark
programs are available at http://www-kb.is.s.u-tokyo.ac.
jp/~watanabe/fair_nonterm/.

The program loop is a simple non-terminating program con-
sisting of a random integer generator, a conditional branch and
events A and B. The program update-max-CPS is the following
program:

ev a k = event A; k ()

ev b k = event B; k ()

cont x () = let y = ∗int in

if x < y then (f ev b y) else (f ev a x)

f ev x = ev (cont x)

main =let r = ∗int in f ev a r.

The variable x in this program represents the largest value gener-
ated by the random integer generator ∗int so far. The event B oc-
curs only when the value of x is updated. Therefore, the program
is fair terminating if and only if the set of integers generated by ∗int
can generates has no upper bound. Since we haven’t embedded any
fairness assumption on ∗int into the program, the program is not fair
terminating.

The program call-twice is:

call twice g = g (); g ()

f () = let x = ∗int in

if x < 0 then (eventB; ()) else

(eventA; call twice f)

main = f ().



program order cycle time [sec]
step 1 step 2 step 3 total

intro 1 3 1.39 1.64 0.52 3.71
loop 2 2 0.51 0.09 0.10 0.78

loop-CPS 3 2 0.84 0.10 0.23 1.25
nested-if 2 2 0.58 0.17 0.38 1.22
op-loop 2 2 0.97 0.04 0.20 1.30

update-max 1 2 0.51 0.09 0.21 0.89
update-max-CPS 3 2 0.86 0.11 0.37 1.43

call-twice 2 2 0.61 0.08 0.20 0.97
odd-nonterm 1 ≥4 - - - timeout

odd-nonterm-annot 1 1 0.92 4.48 - 5.47
compose 2 2 0.41 0.07 0.17 0.72

murase-repeat-buggy 2 2 0.66 0.06 0.18 0.98
murase-closure-buggy 2 2 0.46 0.04 0.21 0.80

koskinen-1-buggy 2 3 1.86 0.25 0.66 2.96
koskinen-2-buggy 1 5 4.58 3.08 1.45 9.50

koskinen-3-1-buggy 1 4 2.03 1.41 1.23 4.94
koskinen-3-2-buggy 1 ≥2 - - - timeout

koskinen-3-2-buggy-annot 1 1 0.57 0.24 - 0.87
koskinen-3-3-buggy 1 4 2.77 0.61 1.84 5.63

Table 1: Experimental results.

The function f first generates a random number x. If x > 0, the
function raises an event B and terminates; otherwise, it raises an
eventA and calls itself twice. If ∗int generates positive and negative
integers alternately, the execution is fair but non-terminating.

Our tool could disprove fair termination of the benchmark
programs, except odd-nonterm and koskinen-3-2-buggy. The
time-outs for odd-nonterm and koskinen-3-2-buggy are due
to the failure to discover appropriate predicates (to be used for
predicate abstraction). To confirm this point, we have prepared
annotated versions of odd-nonterm and koskinen-3-2-buggy
(odd-nonterm-annot and koskinen-3-2-buggy-annot), where
predicates are given as hints. Our tool could successfully verify
them.

7. Related Work
The (automated or non-automated) methods for proving temporal
properties of higher-order programs have been studied recently,
but to our knowledge, ours is the first method that can be used
for disproving general8 linear-time temporal properties of higher-
order programs. Skalka et al. [31], Koskinen and Terauchi [20],
and Hofmann and Chen [14] proposed type-based methods for
proving temporal properties, and Murase et al. [24] have proposed a
fully automated method for proving fair termination. None of those
methods can be used for disproving temporal properties. Lester
et al. [23] have also applied APT higher-order model checking to
automated verification of temporal properties. Their technique can
be used also for disproving properties, but it is applicable only to
finite-data functional programs (where only finite data domains are
allowed).

As already mentioned, our method is an extension of the method
for disproving termination of higher-order functional programs
proposed by Kuwahara et al. [22]. The extension is non-trivial,
however.

For imperative programs, several methods [2, 5, 6] have been
proposed for automatically disproving fair termination. Atig et
al. [2] proposed a method for disproving fair termination, whose
target is multi-threaded programs written in a first-order imperative
language. Cook et al. [5, 6] proposed methods for proving tempo-

8 We focused on fair termination, but as mentioned in Section 1, arbitrary
ω-regular properties can be reduced to fair termination.

ral properties expressed in fair CTL or CTL*. Since the negation of
fair termination can be represented as a fair CTL formula or a CTL*
formula, their methods can disprove fair termination. Those meth-
ods are, however, limited to first-order programs and it is not clear
how they can be extended to deal with higher-order programs. In
fact, Atig et al.’s technique focuses on detecting fair infinite execu-
tion sequences that are “ultimately periodic”, but fair infinite execu-
tion sequences of higher-order programs tend not to be so. Cook et
al.’s technique [5] requires that the control flow graph of a program
is finite. One may think of using defunctionalization [7] to convert
higher-order programs to first-order programs and then applying a
technique for first-order programs. However, since the defunction-
alization typically encodes function closures using recursive data
structures, the verification of the resulting program would actually
become harder.

To our knowledge, our work is the first serious application of
APT higher-order model checking to verification of infinite-data
higher-order programs [18, 28]; the previous applications of higher-
order model checking (to infinite-data programs) [17, 19, 21, 22,
29, 33] used only a subclass of higher-order model checking called
trivial automata model checking. There were a few implementa-
tions of APT higher-order model checkers [9, 10, 25], but the im-
plementation of counterexample generation is new.

8. Conclusion
We have proposed an automated method for disproving fair termi-
nation of higher-order functional programs. Our method is a non-
trivial extension of Kuwahara et al.’s method for disproving plain
termination [22]. Improving the efficiency of our implementation is
left for future work; to that end, a more efficient APT higher-order
model checker is required.

There are a number of limitations in our current verification
method/implementation, to be addressed in future work. We list
some of future work below.

• Tighter integration with fair termination verification [24]: As
discussed in Remark 1, our procedure does not terminate when
a given program is fair terminating; thus, one has to run our
procedure for disproving fair termination and Murase et al.’s
procedure for proving termination [24] must be executed in



parallel. A tighter integration of the two procedures would be
required.
• General temporal property verification: Implementing a tool for

general temporal property verification is left for future work. As
mentioned in Section 1, in theory, Vardi’s technique can be used
for reducing verification of arbitrary ω-regular properties to fair
non-termination, but it is not clear whether the naive reduction
yields a practical verification tool.
• Scalability: The current tool works for only small programs;

to make the tool scalable, we need to improve the underlying
higher-order model checker, predicate discovery engine, etc.
• Relative completeness: It is desirable that the method satisfies

relative completeness in some sense, as in other verification
methods for higher-order programs [24, 33]. It is left for future
work to identify a reasonable condition and prove the relative
completeness with respect to it.
• Extension of the target language: Since our method relies on

higher-order model checking, dealing with recursively-typed or
untyped programs is a fundamental challenge.
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