Automatically Disproving Fair Termination of Higher-Order Functional Programs

> <u>Keiichi Watanabe</u>, Ryosuke Sato Takeshi Tsukada, Naoki Kobayashi The University of Tokyo September 20th, 2016 ICFP 2016 at Nara

Our Goal

Automated method for **disproving fair-termination** of higher-order functional programs

cf. Prove Fair-termination [Murase+ POPL16]

Outline

- Termination & Fair-Termination
- Importance of Fair-Termination
- Our Method
- Implementation and Experiments
- Related Work
- Conclusion

Outline

- Termination & Fair-Termination
- Importance of Fair-Termination
- Our Method
- Implementation and Experiments
- Related Work
- Conclusion

Plain Termination

Program *P* is **terminating**

⇔ Every execution eventually terminates

Terminating

Not Terminating

Fair-Termination

Program *P* is **fair-terminating**

⇔ Every fair execution eventually terminates
 An example of fairness in this talk:
 If A occurs infinitely often, so does B

main

Outline

- Termination & Fair-Termination
- Importance of Fair-Termination
- Our Method
- Implementation and Experiments
- Related Work
- Conclusion

let rand_int () = *int

```
let rec rand_pos () =
  let x = rand_int () in
  if 0 < x then
        x
  else
      rand_pos ()
let main = rand_pos ()</pre>
```

Terminating, assuming randomness of *int

let rand_int () = *int

```
let rec rand_pos () =
  let x = rand_int () in
  if 0 < x then
        x
  else
      rand_pos ()
let main = rand_pos ()</pre>
```

Terminating, assuming randomness of *int

Q. How to incorporate randomness with termination verification?

Insert event expressions

Our Goal (Again)

Automated method for **disproving fair-termination** of higher-order functional programs

cf. Prove Fair-termination [Murase+ POPL16]

includes LTL properties Verification of ω-regular properties can be reduced to that of fair-termination [Vardi APAL91]

Our Goal (Again)

Automated method for **disproving fair-termination** of higher-order functional program

Proving the existence of **fair infinite** executions

includes LTL properties Verification of ω-regular properties can be reduced to that of fair-termination [Vardi APAL91]

Outline

- Termination & Fair-Termination
- Importance of Fair-Termination
- Our Method
 - Overview of Method
 - Step 1, Step 2, Step 3
 - Properties of Our Method
- Implementation and Experiments
- Related Work
- Conclusion

Overview of Method

Overview of Method

Two Branching Nodes in Abstracted Trees [Kuwahara+ CAV15]

∃-node

- Represents inherent non-determinism in programs
 - e.g. random integer, inputs
- We should check if there exists a fair infinite branch

\forall -node

- Represents non-determinism introduced by abstraction
- We should check if every branch is fair and infinite

Two Branching Nodes in Abstracted Trees [Kuwahara+ CAV15]

24

3-node: Inherent Non-Determinism

3-node: Inherent Non-Determinism

Parity Tree Automaton A_C

If **Tree**(D) is accepted by A_C , P is **NOT** fair-terminating

Parity Tree Automaton A_C

Needed to express fairness ted by A_C , *P* is **NOT** fair-terminating

Step 2

Input:

- Tree generating Boolean Program D
- Parity tree automaton A_C

Output:

Whether A_C accepts **Tree**(D)

If A_c rejects the tree,

counterexample will be returned

Output of

Step 1

Step 2

Input:

- Tree generating Boolean Program D
- Parity tree automaton A_C

Higher-order model checking [Ong LICS06]

Output:

- Whether A_C accepts **Tree**(D)
- If A_c rejects the tree,
- counterexample will be returned

Output of

Step 1

Counterexample Tree

Subtree that is **NOT** accepted by A_C

Counterexample Representation

Challenge:

How to represent an infinite counterexample tree?

Counterexample Representation

Challenge:

How to represent an **infinite** counterexample tree?

Solution: Use a finite program that generates a counterexample tree

generates

End

$$main = \exists (End, \forall f)$$
$$f = \forall (A f)$$

cf. Type based effective selection [Carayol&Serre LICS12] [Tsukada&Ong LICS14]

[Kobayashi+ PLDI11]Abstraction Refinement[Kuwahara+ CAV15]

Abstraction Refinement [Kuwahara+ CAV15]

39

[Kobayashi+ PLDI11]Abstraction Refinement[Kuwahara+ CAV15]

Abstraction Refinement [Kobayashi+ PLDI11] [Kuwahara+ CAV15]

Predicates Discovery from Infinite Paths

Challenge:

Previous techniques are **limited to finite** counterexample paths

Predicates Discovery from Infinite Paths

Challenge:

Previous techniques are **limited to finite** counterexample paths

Solution:

Use finite prefixes of counterexample paths

Overview of Method

Our Method is ...

- Sound
- Incomplete

• Not terminating, when P is fair-terminating \rightarrow Run a fair-termination verifier at the same time [Murase+ POPL16]

Outline

- Termination & Fair-Termination
- Importance of Fair-Termination
- Our Method
- Implementation and Experiments
- Related Work
- Conclusion

Implementation

- An extension of MoCHi [Kobayashi+ PLDI11]
- Backend
 - Higher-order model checker: HorSatP [Fujima 15]
 +

Counterexample generation

 SMT solver: Z3 [de Moura & Bjørner TACAS08]

Experiments

Two Benchmarks

- 1. Small, original benchmark programs
- 2. Variants of the benchmark programs in [Koskinen&Terauchi LICS14] and [Murase+ POPL16]

All programs are **NOT** fair-terminating

Experiment Results

Program	Order	Cycles	Time[sec]
murase-repeat	2	2	0.98
murase-closure	2	2	0.8
koskinen-1	2	3	2.96
koskinen-2	1	5	9.5
koskinen-3-1	1	4	4.94
koskinen-3-2	1	≧2	timeout
koskinen-3-2 (predicates given by hand)	1	1	0.87
koskinen-3-3	1	4	5.63

(Excerpt)

- Spec: Xeon E5-2680 v3 (2.50GHz, 16GB of memory)
- Time Limit: 300 seconds

Outline

- Termination & Fair-Termination
- Importance of Fair-Termination
- Our Method
- Implementation and Experiments
- Related Work
- Conclusion

Related Work

Automated verification for higher-order programs

- Proving fair-termination [Murase+ POPL16]
- **Disproving plain termination** [Kuwahara+ CAV15]

Temporal verification for **first-order** programs

- **Proving fair CTL and CTL*** properties [Cook+ TACAS15] [Cook+ CAV15]
- Disproving fair-termination of multi-threaded programs [Atig+ CAV12]

Conclusion

Automated method for **disproving fair-termination** of higher-order functional programs

- Reduction to parity tree automata HO model checking
- Finite representations of infinite counterexample trees
- Predicate discovery from finite counterexample prefixes

Future work

- Tighter integration with fair-termination verification
- Scalability
- General temporal property verification

Extra:

Program that Our Method Cannot Verify

```
let rec repeat n =
  if n = 0 then
    ()
  else
    (event A;
     repeat (n-1))
let rec f x =
  repeat x;
  event B;
  f (x+1)
let main = f 0
```

In order to prove the existence of fair infinite path, we must prove that event B occurs infinitely often

For this, we **must prove** that **repeat** eventually **terminates** for arbitrary input **x**

Our method **cannot prove** the termination automatically Extra:

Program that Our Method Cannot Verify

```
let rec repeat n =
  if n = 0 then
    ()
  else
    (event A;
     repeat (n-1))
let rec f x =
  repeat x;
  event B;
  f (x+1)
let main = f 0
```

cf. **Termination verification** for higher-order programs [Giesl+ TOPLAS11] [Kuwahara+ ESOP14]

For this, we **must prove** that **repeat** eventually **terminates** for arbitrary input **x**

Our method **cannot prove** the termination automatically