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Our Goal

Automated method for disproving fair-termination 
of higher-order functional programs

cf. Prove Fair-termination [Murase+ POPL16]
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Verification of 𝝎-regular properties
can be reduced to
that of fair-termination [Vardi APAL91]

includes LTL properties
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Plain Termination
5

Program 𝑃 is terminating
⇔ Every execution eventually terminates

Terminating

main main

Not Terminating



Fair-Termination
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Fair-Terminating Not Fair-Terminating

An example of fairness in this talk:

If A occurs infinitely often, so does B

Program 𝑃 is fair-terminating
⇔ Every fair execution eventually terminates
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Terminating, assuming
randomness of *int
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let rand_int () = *int

let rec rand_pos () =
let x = rand_int () in
if 0 < x then

x
else

rand_pos ()

let main = rand_pos ()

Termination assuming Randomness



Terminating, assuming
randomness of *int
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Q.
How to incorporate 
randomness with 
termination verification?

let rand_int () = *int

let rec rand_pos () =
let x = rand_int () in
if 0 < x then

x
else

rand_pos ()

let main = rand_pos ()

Termination assuming Randomness



10

let rand_int () =
let r = *int in
if 0 < r then

(event B; r)
else

(event A; r)

let rec rand_pos () =
let x = rand_int () in
if 0 < x then

x
else

rand_pos ()

let main = rand_pos ()

Insert event expressions 

Termination assuming Randomness
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let rand_int () =
let r = *int in
if 0 < r then

(event B; r)
else

(event A; r)

let rec rand_pos () =
let x = rand_int () in
if 0 < x then

x
else

rand_pos ()

let main = rand_pos ()

If  *int never returns a positive integer,
execution is unfair

A → A → A → A →…

Termination assuming Randomness

Termination assuming 
randomness
→ Fair-termination



Our Goal (Again)

Automated method for disproving fair-termination 
of higher-order functional programs

cf. Prove Fair-termination [Murase+ POPL16]
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Verification of 𝝎-regular properties
can be reduced to
that of fair-termination [Vardi APAL91]

includes LTL properties



Our Goal (Again)

Automated method for disproving fair-termination 
of higher-order functional programs
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Verification of 𝝎-regular properties
can be reduced to
that of fair-termination [Vardi APAL91]

includes LTL properties

Proving the existence of fair infinite executions



Outline

• Termination & Fair-Termination

• Importance of Fair-Termination

•Our Method
• Overview of Method
• Step 1, Step 2, Step 3
• Properties of Our Method

• Implementation and Experiments

•Related Work

•Conclusion
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Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness 
Constraint

Functional 
Program

Step 1: Reduction to 
Higher-Order 

Model Checking
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Tree Generating 
Program

Tree 
Automaton

reject

Predicates
Step 3:

Predicate 
Discovery

Counterexample

Fair infinite executions exist!

An extension of a method for 
disproving plain termination
[Kuwahara+ CAV15]
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Tree Generating 
Program

Tree 
Automaton

reject
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Discovery
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Abstracted Tree

Accepted by 
the automaton

Fair infinite 
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Two Branching Nodes in Abstracted Trees

[Kuwahara+ CAV15]

• Represents inherent non-determinism in programs

• e.g. random integer, inputs

• We should check if there exists a fair infinite branch

• Represents non-determinism introduced by abstraction

• We should check if every branch is fair and infinite

∃-node

∀-node



Tree(𝐷)

let f x =
let y = x+1 in
if 0 < y then
event B; g y

else
event A; g y

in f *int

𝑃
let f bx=0 =
if bx=0 then
∀(B(g true))
else
∀(B(g true), A(g false))

in ∃(f true, f false)

𝐷

Computation tree of 𝑃

Abstract by 𝒙 = 𝟎, 𝟎 < 𝒚
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*

if

A

if

A

if

B

if

B

・・・ ・・・

0<y

x=0

∀∀

∃

B A B

¬(x=0)

0<y¬(0<y)

[Kuwahara+ CAV15]
Two Branching Nodes in Abstracted Trees



Tree(𝐷)

let f x =
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event B; g y
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*

if

A

if

A

if

B

if

B

・・・ ・・・

x=0

merged
∃

¬(x=0)

0<y

x=0

∀∀

B A B
0<y¬(0<y)

Inherent Non-Determinism∃-node:

x=1

x=-1

x=-2



Tree(𝐷)

let f x =
let y = x+1 in
if 0 < y then
event B; g y

else
event A; g y

in f *int

𝑃
let f bx=0 =
if bx=0 then
∀(B(g true))
else
∀(B(g true), A(g false))

in ∃(f true, f false)

𝐷

Computation tree of 𝑃

Abstract by 𝒙 = 𝟎, 𝟎 < 𝒚
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*

if

A

if

A

if

B

if

B

・・・ ・・・

x=0 ∃
¬(x=0)

0<y

x=0

∀∀

B A B
0<y¬(0<y)

Inherent Non-Determinism∃-node:

x=1

x=-1

x=-2

Check if either branch is 
fair and infinite



Tree(𝐷)

let f x =
let y = x+1 in
if 0 < y then
event B; g y

else
event A; g y

in f *int

𝑃
let f bx=0 =
if bx=0 then
∀(B(g true))
else
∀(B(g true), A(g false))

in ∃(f true, f false)
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*

if

A

if

A

if

B

if

B

・・・

¬(x=0)

0<y¬(0<y)
0<y

x=0

∀

∃

B

∀
・・・

Non-Determinism
introduced by Abstraction∀-node:

thenelse
thenelse

A B



Tree(𝐷)

let f x =
let y = x+1 in
if 0 < y then
event B; g y

else
event A; g y

in f *int

𝑃
let f bx=0 =
if bx=0 then
∀(B(g true))
else
∀(B(g true), A(g false))

in ∃(f true, f false)

𝐷

Computation tree of 𝑃

Abstract by 𝒙 = 𝟎, 𝟎 < 𝒚
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*

if

A

if

A

if

B

if

B

・・・

¬(x=0)

0<y¬(0<y)
0<y

x=0

∀

∃

B

∀
・・・

thenelse
thenelse

A B

Non-Determinism
introduced by Abstraction∀-node:

Check if both branches are 
fair and infinite



Parity Tree Automaton 𝐴𝐶

Tree(𝐷) is accepted by 𝐴𝐶 if

• ∃-node
Some branches have fair infinite paths

• ∀-node
All branches have fair infinite paths 

¬(x=0)

0<y¬(0<y)
0<y

x=0

∀∀

∃

B A B

29

If Tree(𝐷) is accepted by 𝐴𝐶, 
𝑃 is NOT fair-terminating



Parity Tree Automaton 𝐴𝐶

Tree(𝐷) is accepted by 𝐴𝐶 if

• ∃-node
Some branches have fair infinite paths

• ∀-node
All branches have fair infinite paths 

¬(x=0)

0<y¬(0<y)
0<y

x=0

∀∀

∃

B A B
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If Tree(𝐷) is accepted by 𝐴𝐶, 
𝑃 is NOT fair-terminating

Needed to express fairness



Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness 
Constraint

Functional 
Program

Step 1: Reduction to 
Higher-Order 

Model Checking
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Tree Generating 
Program

Tree 
Automaton

reject

Predicates
Step 3:

Predicate 
Discovery

Counterexample

Fair infinite executions exist!

Abstracted Tree

Decide whether
the automaton 
accepts the 
abstracted tree



Input:
• Tree generating Boolean Program 𝐷
• Parity tree automaton 𝐴𝐶

Output of 
Step 1
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Step 2

Output:
Whether 𝐴𝐶 accepts 𝐓𝐫𝐞𝐞 𝐷
If 𝐴𝑐 rejects the tree, 

counterexample will be returned



Input:
• Tree generating Boolean Program 𝐷
• Parity tree automaton 𝐴𝐶

Output of 
Step 1
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Step 2

Output:
Whether 𝐴𝐶 accepts 𝐓𝐫𝐞𝐞 𝐷
If 𝐴𝑐 rejects the tree, 

counterexample will be returned

Higher-order
model checking
[Ong LICS06]



Counterexample Tree

Subtree that is NOT accepted by 𝐴𝐶

Abstracted computation tree Counterexample tree

34

∀End

∃

A

A

A

∃

∀End

∃

A

A

A



Counterexample Representation
35

Challenge:
How to represent an infinite counterexample tree?



Counterexample Representation

cf. Type based effective selection
[Carayol&Serre LICS12] [Tsukada&Ong LICS14]

main = ∃ (End, ∀ f)
f = ∀(𝐴 f)

36

Solution:
Use a finite program that 
generates a counterexample tree

generates

Challenge:
How to represent an infinite counterexample tree?



Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness 
Constraint

Functional 
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Tree Generating 
Program

Tree 
Automaton

reject

Predicates
Step 3:

Predicate 
Discovery

Counterexample

Fair infinite executions exist!

Refine abstraction by 
using counterexamples
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Discover predicates from counterexample paths

Abstraction Refinement 

Example: if flag then fair_loop() else ()

[Kobayashi+ PLDI11] 
[Kuwahara+ CAV15]

if

( ) (AB)𝜔

Computation tree always true
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Discover predicates from counterexample paths

Abstraction Refinement 

Example: if flag then fair_loop() else ()

[Kobayashi+ PLDI11] 
[Kuwahara+ CAV15]

if

( ) (AB)𝜔

Coarse abstraction

Abstracted tree

∀

End(AB)𝜔

Computation tree

Spurious
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Discover predicates from counterexample paths

Abstraction Refinement 

Example: if flag then fair_loop() else ()

[Kobayashi+ PLDI11] 
[Kuwahara+ CAV15]

if

( ) (AB)𝜔

Coarse abstraction

Abstracted tree

∀

End(AB)𝜔

Computation tree

Discover new predicates
by analyzing counterexample paths
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Discover predicates from counterexample paths

Abstraction Refinement 

Example: if flag then fair_loop() else ()

[Kobayashi+ PLDI11] 
[Kuwahara+ CAV15]

if

( ) (AB)𝜔

Coarse abstraction

Abstracted tree

∀

End(AB)𝜔

Abstraction with 
discovered predicates

Computation tree

(AB)𝜔

∀
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Challenge:
Previous techniques are limited to 
finite counterexample paths

Predicates Discovery from Infinite Paths

Infinite
counterexample path∀

A𝝎(AB)𝜔



Solution:
Use finite prefixes of counterexample paths

43

Finite
length

Challenge:
Previous techniques are limited to
finite counterexample paths

∀

A𝜔(AB)𝜔

Predicates Discovery from Infinite Paths



Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness 
Constraint

Functional 
Program

Step 1: Reduction to 
Higher-Order 

Model Checking
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Tree Generating 
Program

Tree 
Automaton

reject

Predicates
Step 3:

Predicate 
Discovery

Counterexample

Fair infinite executions exist!



Our Method is …

• Sound

• Incomplete

•Not terminating, when 𝑃 is fair-terminating
→ Run a fair-termination verifier at the same time

45

[Murase+ POPL16]
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•Conclusion
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Implementation

• An extension of MoCHi [Kobayashi+ PLDI11]

• Backend
• Higher-order model checker:

HorSatP [Fujima 15] 

＋

Counterexample generation
• SMT solver: 

Z3 [de Moura & Bjørner TACAS08]
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Experiments

Two Benchmarks
1. Small, original benchmark programs
2. Variants of the benchmark programs in 

[Koskinen&Terauchi LICS14] and [Murase+ POPL16] 

All programs are NOT fair-terminating

48
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• Spec: Xeon E5-2680 v3 (2.50GHz, 16GB of memory)
• Time Limit: 300 seconds

Program Order Cycles Time[sec]
murase-repeat 2 2 0.98
murase-closure 2 2 0.8

koskinen-1 2 3 2.96
koskinen-2 1 5 9.5

koskinen-3-1 1 4 4.94
koskinen-3-2 1 ≧2 timeout

koskinen-3-2
(predicates given by hand)

1 1 0.87

koskinen-3-3 1 4 5.63

(Excerpt)

Experiment Results
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Related Work

• Proving fair CTL and CTL* properties
[Cook+  TACAS15] [Cook+ CAV15]

• Disproving fair-termination of
multi-threaded programs [Atig+ CAV12]

51

Automated verification for higher-order programs

• Proving fair-termination [Murase+ POPL16]

• Disproving plain termination [Kuwahara+ CAV15]

Temporal verification for first-order programs



Conclusion

Future work
• Tighter integration with fair-termination verification

• Scalability

• General temporal property verification

• Reduction  to parity tree automata HO model checking

• Finite representations of infinite counterexample trees

• Predicate discovery from finite counterexample prefixes

52

Automated method for disproving fair-termination 
of higher-order functional programs



Program that Our Method Cannot Verify 
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let rec repeat n =
if n = 0 then
()

else
(event A;
repeat (n-1))

let rec f x =
repeat x;
event B;
f (x+1)

let main = f 0

Extra:

In order to prove the existence 
of fair infinite path,
we must prove that
event B occurs infinitely often

For this,
we must prove that
repeat eventually terminates
for arbitrary input x

Our method cannot prove
the termination automatically



Program that Our Method Cannot Verify 
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let rec repeat n =
if n = 0 then
()

else
(event A;
repeat (n-1))

let rec f x =
repeat x;
event B;
f (x+1)

let main = f 0

Extra:

In order to prove the existence 
of fair infinite path,
we must prove that
event B occurs infinitely often

For this,
we must prove that
repeat eventually terminates
for arbitrary input x

Our method cannot prove
the termination automatically

cf. Termination verification
for higher-order programs
[Giesl+ TOPLAS11]
[Kuwahara+ ESOP14]


